Tunable interdot coupling in few-electron bilayer graphene double quantum dots

نویسندگان

چکیده

We present a highly controllable double quantum dot device based on bilayer graphene. Using architecture of interdigitated gate fingers, we can control the interdot tunnel coupling between 1 to 4 GHz and mutual capacitive 0.2 0.6 meV, independently charge occupation dots. The charging energy hence size remains nearly unchanged. tuning range covers operating regime typical silicon GaAs spin qubit devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron Transport through Double Quantum Dots with Interdot Coulomb Repulsion

Electron transport through a system of two quantum dots connected in series is studied theoretically with the use of non-equilibrium Green function formalism based on the equation of motion method. Each dot is described by the one-level Anderson Hamiltonian and interdot Coulomb interactions in the form of the Hubbard-like term are taken into account. The electric current and occupation numbers ...

متن کامل

Tunable few electron quantum dots in InAs nanowires

Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using th...

متن کامل

Electronic excited states in bilayer graphene double quantum dots.

We report tunneling spectroscopy experiments on a bilayer graphene double quantum dot device that can be tuned by all-graphene lateral gates. The diameter of the two quantum dots are around 50 nm and the constrictions acting as tunneling barriers are 30 nm in width. The double quantum dot features additional energies on the order of 20 meV. Charge stability diagrams allow us to study the tunabl...

متن کامل

Few-electron quantum dots

We review some electron transport experiments on few-electron, vertical quantum dot devices. The measurement of current versus source–drain voltage and gate voltage is used as a spectroscopic tool to investigate the energy characteristics of interacting electrons confined to a small region in a semiconducting material. Three energy scales are distinguished: the single-particle states, which are...

متن کامل

Bilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene.

Symmetry-breaking in a quantum system often leads to complex emergent behavior. In bilayer graphene (BLG), an electric field applied perpendicular to the basal plane breaks the inversion symmetry of the lattice, opening a band gap at the charge neutrality point. In a quantizing magnetic field, electron interactions can cause spontaneous symmetry-breaking within the spin and valley degrees of fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Physics Letters

سال: 2021

ISSN: ['1520-8842', '0003-6951', '1077-3118']

DOI: https://doi.org/10.1063/5.0035300